BASIC MATHEMATICS

-11-

75 (NS)

(English Version)

Instructions:

- 1. The question paper has 5 parts namely, A, B, C, D and E. Answer ALL the Parts.
- 2. Part A carries 20 marks

Part - B carries 12 marks

Part - C carries 15 marks

Part - D carries 25 marks

Part – E carries 8 marks.

- 3. For Part A questions, only the first written answers will be considered for evaluation.
- 4. In the Part D, use graph sheet for the question number 40 on L.P.P.
- 5. Write the question numbers properly as indicated in the question paper.
- 6. For question having graph, alternate question is given at the end of the question paper in a separate section in the Part F for Visually Challenged Students.

PART - A

I. Answer all the multiple choice questions:

 $(5\times 1=5)$

1) If
$$A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 3 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -4 & -1 \\ 1 & 5 & -2 \end{bmatrix}$ then $(A + B)$ is

a)
$$\begin{bmatrix} 4 & 2 & -3 \\ 0 & 8 & 4 \end{bmatrix}$$

b)
$$\begin{bmatrix} 4 & -2 & 3 \\ 0 & 8 & -4 \end{bmatrix}$$

c)
$$\begin{bmatrix} -4 & 2 & 3 \\ 0 & -8 & 4 \end{bmatrix}$$

d)
$$\begin{bmatrix} 4 & -2 & -3 \\ 0 & -8 & -4 \end{bmatrix}$$

- 2) If ${}^{n}C_{10} = {}^{n}C_{15}$ then *n* is
 - a) 25

b) 29

c) 24

- d) 23
- 3) The probability of getting a black card from a pack of 52 cards is
 - a) $\frac{3}{4}$

b) $\frac{1}{52}$

c) $\frac{1}{4}$

- d) $\frac{1}{2}$
- 4) The value of $4\cos^3 10^\circ 3\cos 10^\circ$ is
 - a) $\frac{\sqrt{3}}{2}$

b) $\frac{2}{\sqrt{3}}$

c) $\frac{1}{\sqrt{3}}$

- d) $\frac{1}{2}$
- 5) The value of $\int 4 \sec^2 x \, dx$ is
 - a) $4 \sec x + c$

b) $4\sin x + c$

c) $4 \tan x + c$

d) $4\cot x + c$

II. Match the following:

 $(5 \times 1 = 5)$

- 6) i) The value of 3200 3201 is
- a) 27

ii) If ${}^5P_r = 60$, then r is

- b) 12
- iii) If 5:20=3:x then the value of x is
- c) $\frac{x}{X}$
- iv) The value of $\lim_{x \to 3} \left(\frac{x^3 27}{x 3} \right)$ is
- $\frac{x}{y}$

- v) If $x^2 y^2 = a^2$ then $\frac{dy}{dx}$ is
- e) -2
- f) 3
- III. For question numbers 7 to 11 choose the appropriate answers from the brackets given below: $(5 \times 1 = 5)$
 - $(56, 9, \frac{-3}{4}, 1, 2, 4)$
 - 7) If $\begin{bmatrix} 2 & x & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix}$ then the value of x is
 - 8) The number of triangles that can be formed from the 8 non collinear points is

9) The third proportional of 4 and 6 is ————

- 11) The value of $\int_{0}^{\pi/2} \sin 2x \, dx$ is ————
- IV. Answer the following questions:

 $(5\times 1=5)$

- 12) Negate: $\sim p \rightarrow q$
- 13) If a:b=2:3, b:c=5:7 and c:d=3:1 then find a:d.
- 14) If $\tan A = \frac{1}{\sqrt{3}}$ then find $\tan 2A$.
- 15) Differentiate $3x^2 + 4y^2 = 10$ w. r. t. x.
- 16) Evaluate $\int \left(x^2 \frac{6}{x} + 5e^x\right) dx$.

PART - B

V. Answer any six of the following questions:

 $(6 \times 2 = 12)$

- 17) In how many ways can the letters of the word "HOPPER" be arranged?
- 18) Find the number of parallelograms that can be formed from the set of 6 parallel lines intersecting another set of 4 parallel lines.
- 19) Two coins are tossed simultaneously. What is the probability of getting
 - a) Atleast one tail
 - b) Atmost one tail?
- 20) Divide ₹ 6,000 in the ratio 3 : 4 : 5.
- 21) 500 workers can finish a work in 8 days. How many workers will finish the same work in 5 days?
- 22) For ₹ 512.50 due 6 months at 15% p.a. Find the true present value and discounted value of the bill.
- 23) Find the equation of the parabola given that its focus is (-4, 0) and directrix is x=4.

- 24) Find the axis and length of the latus rectum of the parabola $x^2 = 16y$.
- 25) Evaluate $\int \frac{4x+3}{2x^2+3x+5} dx$.
- 26) Evaluate $\int_{0}^{3} \left(\frac{x+3}{x+2} \right) dx$.
- 27) Find the area enclosed by the curve $y=x^2$, x-axis and the ordinates x=0 and x=1.

PART - C

VI. Answer any five of the following questions:

 $(5\times3=15)$

28) Solve:

$$3x + 2y = 8 \text{ and}$$

$$4x - 3y = 5$$

by Cramer's rule.

- 29) The difference between BD and TD on a certain sum of money due in 6 months is ₹ 27. Find the amount of the bill if the rate of interest is 6% p.a.
- 30) A person invests ₹ 15,000 partly in 3% stock at 75 and partly in 6% stock at 125. If the income from both is ₹ 675. Find his investment in 2 types of stocks.

- 31) The price of a T.V set inclusive of sales tax of 9% is ₹ 13,407. Find its marked price. If the sales tax is increased to 13%, how much more does the customer pay for the T.V?
- 32) Find $\frac{dy}{dx}$, given that $x = a\cos^4 \theta$, $y = a\sin^4 \theta$.
- 33) A ladder of 15 feet long leans against a smooth vertical wall. If the top slides downwards at the rate of 2 ft/sec. Find how fast the lower end is moving when the lower end is 12 ft away from the wall.
- 34) Evaluate $\int \frac{x+2}{(2x-1)(x-3)} dx$.

PART - D

VII. Answer any five questions:

 $(5\times 5=25)$

35) Solve the linear equations by matrix method.

$$x+y-z=1$$

$$3x+y-2z=3$$

$$x-y-z=-1$$

- 36) Find the coefficient of x^8 in $\left(3x^2 \frac{1}{2x}\right)^{10}$.
- 37) Resolve $\frac{2x^2+10x-3}{(x+1)(x-3)(x+3)}$ into partial fractions.
- 38) Show that $\gamma(p \lor q) \to (\neg p \land \neg q)$ is a Tautology.

75 (NS)

- 39) ABC company required 1000 hours to produce 1st 30 engines. If the learning effect is 90%. Find the total labour cost at ₹ 20/hour to produce a total of 120 engines.
- 40) Solve the following LPP graphically.

Maximize: Z = 5x + 3y

Subject to the constraints:

$$3x + 5y \le 15$$
,

$$5x + 2y \le 10$$
,

$$x \ge 0$$
,

$$y \ge 0$$
.

41) Prove that:

$$\frac{\sin 6A + \sin 2A + 2\sin 4A}{\sin 7A + \sin 3A + 2\sin 5A} = \frac{\sin 4A}{\sin 5A}.$$

- 42) Find the equation of the circle passing through the points (1, -4), (5, 2) and having its centre on the line x-2y+9=0.
- 43) Evaluate $\lim_{x \to 2} \left[\frac{x^2 4}{\sqrt{x + 2} \sqrt{3x 2}} \right]$.

PART - E

VIII. Answer any two of the following questions:

$$(2\times 4=8)$$

- 44) A flag staff stands upon the top of a building at a distance of 20 mts. The angles of elevation of the top of the flag staff and the building are 60° and 30° respectively. Find the height of the flag staff.
- 45) If $y = a\cos(\log x) + b\sin(\log x)$ show that $x^2y_2 + xy_1 + y = 0$.

- 46) The total revenue function is given by $R = 400 \, x 2x^2$ and the total cost function is given by $C = 2x^2 + 40x + 4000$. Find
 - a) The marginal revenue and marginal cost functions.
 - b) The output at which marginal revenue = marginal cost.

PART - F

(Only for Visually Challenged Students) $(1 \times 5 = 5)$

40) Smaran being a manufacturer of nuts and bolts for industrial machinery. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts while it takes 3 hours on machine A and 1 hour on machine B to produce a package of Bolts. He earns a profit of ₹ 2.50/package of nuts and ₹ 1/package of bolts. Form a linear programming problem to maximise his profit, if he operates each machine for atmost 12 hours a day.

CANARA VIKAAS PREUNIVERSITY COLLEGE, MANGALURU BASIC MATHEMATICS - ANSWER KEY - 2024

PART - A

I. Choose the correct answer (Each question carries one mark)

5X1=5

1.b)
$$\begin{bmatrix} 4 & -2 & 3 \\ 0 & 8 & -4 \end{bmatrix}$$

- 2. a)25
- 3. d)1/2
- 4. a) $\frac{\sqrt{3}}{2}$
- 5. c) $4 \tan x + c$

II. Match the following

5X1=5

- 6. i. e) -2
 - ii. f) 3
 - iii. b) 12
 - iv. a) 27
 - v. d) x/y

III. Choose appropriate answer from the answer given below)

5x1=5

- 7. -3/4
- 8. 56
- 9. 9
- 10. 2
- 11. 1

IV. Answer the following questions

5X1=5

- 12. ~p∧~q
- 13. 10:7
- 14. $\sqrt{3}$

$$15. \ \frac{dy}{dx} = -\frac{3x}{4y}$$

16.
$$\frac{x^3}{3} - 6\log|x| + 5e^x + c$$

PART - B

V. Answer any SIX of the following questions.

6x2=12

17.
$$\frac{6!}{2!} = 360$$

- 18. ${}^{6}C_{2}x^{4}C_{2}=90$
- 19. a) P(at least 1 tail) = 3/4
 - b) P(at most 1 tail) = 3/4
- 20. 3x+4x+5x=6000

$$x = 500$$

Rs.1500, Rs.2000, Rs.2500

21.500:x = 5:8

$$x = 800$$
 workers

22.
$$P = \frac{F}{1+tr} = Rs.476.74$$

DV=F(1-tr)=Rs.474.06

$$23. y^2 = -4ax$$
$$y^2 = -16x$$

25. Put t=2x²+3x+5 , dt=4x+3
$$\int \frac{4x+3}{2x^2+3x+5} = \int \frac{1}{t} dt = \log|t| + c = \log|2x^2+3x+5| + c$$

26.
$$\int_0^3 \frac{x+3}{x+2} dx = \int_0^3 \frac{x+2}{x+2} dx + \int_0^3 \frac{1}{x+2} dx = x|_0^3 + \log|x+2|_0^3 = 3 + \log|5/2|$$

$$27.\int_0^1 y dx = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}$$

PART - C

VI. Answer any FIVE of the following questions.

$$5x3=15$$

28.
$$\Delta$$
=-17 Δ_1 =-34, Δ_2 =-17 x =2, y =1

29. BG=27,
BG=
$$\frac{F(tr)^2}{1+tr}$$

F=Rs.30900

30. Part I

MV Income
75 3

$$x$$
 I_1
 $I_1=0.04x$
 $I_1+I_2=675$
 $x=Rs.5625$
Rs.5625at 3%

Rs. 9375 at 6%

Part II MV Income 125 6 15000-x
$$I_2$$
 $I_2 = 0.048(15000-x)$

31. SP=(100+9)% of MP
MP=12300
If ST=13%
SP=(100+13)%of12300 =Rs.13899

32. Given that
$$x = a\cos^4 \theta$$
, $y = a\sin^4 \theta$

$$\frac{dx}{d\theta} = -4a\cos^3\theta \times \sin\theta, \quad \frac{dy}{d\theta} = 4a\sin^3\theta \times \cos\theta$$
$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{4a\sin^3\theta \times \cos\theta}{-4a\cos^3\theta \times \sin\theta} = -\frac{\sin^2\theta}{\cos^2\theta} = -\tan^2\theta$$

33. Given that
$$\frac{dy}{dt} = -12ft/sec$$
, x=12feet, $\frac{dx}{dt} = ?$

$$x^{2} + y^{2} = 15^{2} \Rightarrow y=9$$

$$x^{2} + y^{2} = 15^{2} \Rightarrow 2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$

$$\frac{dx}{dt} = +9feet/sec$$

34.
$$\int \frac{x+2}{(2x-1)(x-3)} dx$$

Consider,
$$\frac{x+2}{(2x-1)(x-3)} = \frac{A}{2x-1} + \frac{B}{x-3}$$
1
 $x+2 = A(x-3) + B(2x-1)$ 2

by substituting x = 3, B=1

By substituting
$$x = \frac{1}{2}$$
, A=-1

$$\int \frac{x+2}{(2x-1)(x-3)} dx = \int \frac{A}{2x-1} + \frac{B}{x-3} dx = -\int \frac{1}{2x-1} dx + \int \frac{1}{x-3} dx$$
$$= -\frac{\log(2x-1)}{2} + \log(x-3) + c$$

PART - D

VII. Answer any FIVE of the following questions.

5x5 = 25

Adjoint A=
$$\begin{bmatrix} -3 & 2 & -1 \\ 1 & 0 & -1 \\ -4 & 2 & -2 \end{bmatrix}$$
 A⁻¹= $\frac{1}{2}\begin{bmatrix} -3 & 2 & -1 \\ 1 & 0 & -1 \\ -4 & 2 & -2 \end{bmatrix}$ x=2, y=1, z=1

36. Given that $(3x^2 - \frac{1}{2x})^{10}$

36. Given that
$$(3x^2 - \frac{1}{2x})^{10}$$

$$x = 3x^{2}, a = -\frac{1}{2x}, n = 10$$

$$T_{r+1} = {}^{10}C_{4}x^{n-r}a^{r}$$

$$= {}^{10}C_{4}(3x^{2})^{10-r}\left(-\frac{1}{2x}\right)^{r}$$

$$T_{r+1} = {}^{10}C_4 x^{n-r} a^r$$

= ${}^{10}C_4 (3x^2)^{10-r} \left(-\frac{1}{2}\right)^r$

Coefficient of
$$x^8 \Rightarrow r = 4$$

$$T_{4+1} = {}^{10}C_4 (3x^2)^{10-4} \left(-\frac{1}{2x}\right)^4$$

Coefficient of
$$x^8$$
 is ${}^{10}C_4$ (3) ${}^6\left(-\frac{1}{2}\right)^4 = 9568.125$

37.
$$\frac{2x^2+10x-3}{(x+1)(x-3)(x+3)} = \frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{x+3}$$

$$2x^2 + 10x - 3 = A(x-3)(x+3) + B(x+1)(x+3) + C(x+1)(x-3)$$

If
$$x=-1$$
, $A=11/8$

If
$$x=3$$
, $B=15/8$

If
$$x=-2$$
, $C=-5/4$

$$\frac{2x^2 + 10x - 3}{(x+1)(x-3)(x+3)} = \frac{11/8}{x+1} + \frac{15/8}{x-3} + \frac{-5/4}{x+3}$$

38.

р	q	~p	~q	pvq	~(pvq)	~p^~q	~(pvq)→(~p∧~q)
Т	Т	F	F	Т	F	F	Т
Т	F	F	Т	Т	F	F	Т
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	F	Т	Т	Т

Given preposition is a tautology

39.

Units produced	Total output in units	Cumulative average time per unit	total hours
1	1	1000	1000
1	2	900	1800
2	4	810	3240

Total Labour cost 3240x20=Rs.64800

40.
$$3x+5y=15$$
; $x=0$, $y=3$ and $y=0$, $x=5$ $5x+2y=10$; $x=0$, $y=5$ and $y=0$, $x=2$

Corner Points	Z=5x+3y
O(0, 0)	0
A(0, 3)	9
B(20/19, 45/19)	235/19 - MAXIMUM
C(2, 0)	10

Z is maximum at B(20/19, 45/19). x=20/19, y=45/19 and Z=235/19

41. LHS
$$\frac{(\sin 6A + \sin 2A) + 2 \sin 4A}{(\sin 7A + \sin 3A) + 2 \sin 5A}$$

$$= \frac{2 \sin 4A \cdot \cos 2A + 2 \sin 4A}{2 \sin 5A \cdot \cos 2A + 2 \sin 5A}$$

$$= \frac{2 \sin 4A (\cos 2A + 1)}{2 \sin 5A (\cos 2A + 1)} = \frac{\sin 4A}{\sin 5A} = RHS$$

42. Equation of the circle $x^2+y^2+2gx+2fy+c=0$

Passes through $(1, -4) \Rightarrow 2g-8f+c=-17$

Passes through $(5, 2) \Rightarrow 10g+4f+c=-29$

Center (-g, -f) is on x-2y+9=0

$$-g+2f=-9$$

On solving q=3, f=-3, c=-47

Equation of the circle $x^2+y^2+6x-6y-47=0$

43.
$$\lim_{x\to 2} \left[\frac{x^2-4}{\sqrt{x+2}-\sqrt{3x-2}} \right]$$

Rationalizing the denominator

Rationalizing the denominate
$$\lim_{x \to 2} \left[\frac{(x^2 - 4)(\sqrt{x + 2} + \sqrt{3x - 2})}{(x + 2) - (3x - 2)} \right]$$

$$= \lim_{x \to 2} \left[\frac{(x + 2)(x - 2)(\sqrt{x + 2} + \sqrt{3x - 2})}{-2(x - 2)} \right]$$

$$= \lim_{x \to 2} \left[\frac{(x + 2)\sqrt{x + 2} + \sqrt{3x - 2})}{-2} \right]$$

$$= \frac{(2 + 2)\sqrt{2 + 2} + \sqrt{6 - 2}}{-2} = -8$$

PART - E

VIII. Answer any TWO of the following questions. 44.

2x4 = 8

20m

Tan30 = x/20

$$\frac{1}{\sqrt{3}} = \frac{x}{20}$$
 or $x = \frac{20}{\sqrt{3}}$

Tan60=(x+y)/20

$$\sqrt{3} = \frac{\frac{20}{\sqrt{3}} + y}{20}$$

$$20\sqrt{3} = \frac{20}{\sqrt{3}} + y$$

$$y = \frac{40}{\sqrt{3}}$$

45.
$$y = a\cos(\log x) + b\sin(\log x)$$

$$y_1 = -a\sin(\log x)\frac{1}{x} + b\cos(\log x)\frac{1}{x}$$

$$xy_1 = -a\sin(\log x) + b\cos(\log x)$$

$$xy_2 + y_1 = -a\cos(\log x)\frac{1}{x} - b\sin(\log x)\frac{1}{x}$$

$$x^2 y_2 + y_1 = -y$$

$$x^2y_2 + y_1 + y = 0$$

46.
$$R = 400x - 2x^2$$
, $C = 2x^2 + 40x + 4000$

(a)
$$MR = \frac{dR}{dx} = 400 - 4x$$
, $MC = \frac{dC}{dx} = 4x + 40$

(b) Given that
$$MR = MC$$

$$400 - 4x = 4x + 40$$

$$x = 45$$
 Units