

(English Version)

Instructions:

- Statistical table and Graph sheets will be supplied on 1. request.
- Scientific calculators are allowed. 2
- All working steps should be clearly shown, 3.
- For Section-A, only the first written answers will be 4. considered for evaluation.
- For questions having diagram, graph and map, alternative 5. questions are given at the end of the question paper in a separate section for visually challenged students.

SECTION - A

Choose the correct answer from the choices given: 1.

 $(5\times1=5)$

- Life expectancy of a newborn baby
 - Mortality a)
- Longevity
- Fertility c)
- d) Fecundity
- The weights used in the construction of Marshall-Edgeworth's price index 2) number
 - a)

- b)
- c) $\left(\frac{q_0+q_1}{2}\right)$
- d) $(q_0 \div q_1)$
- The variance of a χ^2 distribution with 12 degrees of freedom is 24. Then 3) its mean is
 - a) 72

b) 2

c) 0.5

d) 12

- 4) Type I error is
 - a) Rejecting H_0 when it is true
 - b) Accepting H_0 when it is true
 - c) Rejecting H_0 when it is not true
 - d) Accepting H_0 when it is not true
 - 5) The game is said to be fair, if the value of the game is
 - a) V > 0

b) V=0

c) V < 0

- d) $V \neq 0$
- II. Fill in the blanks by choosing the appropriate answer from those given in the brackets: $(5 \times 1 = 5)$

$$\left(\frac{1}{2}, d_2\sigma', \text{ Geometric mean, } \sqrt{\frac{PQ}{n}}, \text{ first, } \overline{R}\right)$$

- 6) The best average used in the construction of index number ————
- 7) Binomial distribution is positively skewed when p < ---
- 8) Standard error of the sample proportion is ————
- 10) The feasible solution to the L.P.P exists in ———— quadrant.

31 (NS)

III. Match the following.

 $(5\times 1=5)$

A

- 11) Deaths of new bornbabies within 28 days
- a) Lepto Kurtic ($\beta_2 > 3$)

В

- 12) Index number which
- b) $1-\beta$
- doesn't satisfy unit test
- 13) Student's t-distribution curve
- c) C_2

14) Power of a test

d) Neonatal deaths

15) Shortage cost

- e) Simple aggregative price index number
- f) P (Type I error)
- IV. Answer the following questions:

 $(5\times 1=5)$

- 16) Write one use of vital statistics.
- 17) Define secular trend.
- 18) A normal variate has mean 150 and variance 25. Find the standard deviation.
- 19) Define rejection region.
- 20) When is the solution to the transportation problem said to be non-degenerate?

SECTION - B

Answer any five of the following questions: V.

 $(5 \times 2 = 10)$

- 21) Define irregular variation and give an example.
- 22) Write two conditions for applying binomial expansion method of interpolation and extrapolation.
- 23) Write down the Bernoulli distribution probability mass function with the parameter $p = \frac{2}{5}$.
- 24) If z_1 and z_2 are two independent S.N.Vs then name the distribution of $(z_1^2 + z_2^2)$ and write its mean.
- 25) Define parameter and statistic.
- 26) Given: $n_1 = 100$, $n_2 = 60$, $P_1 = 0.4$ and $P_2 = 0.8$. Find S.E. $(p_1 p_2)$.
- 27) In statistical quality control, what are defect and defectives?
- 28) Given : R = 5000items/year, $C_3 = \text{₹ 50/cycle}$, $C_1 = \text{₹ 2/item/year}$. Calculate minimum average inventory cost.

SECTION - C

VI. Answer any four of the following questions:

 $(4 \times 5 = 20)$

29) Construct a suitable index number for the following data and comment.

Item	Item Price (in ₹)			
	2018	2023	Quantity 2023	
Rice	20	40	10	
Wheat	25	32	3	
Ragi	18	30	5	
Oil	80	100	3	

30) Interpolate the value of Y when X = 25, using Newton's forward difference method for the following data.

X	10	20	30	40
Υ	13	15	19	25

- 31) In a class 60% of the students are boys. In a random sample of 5 students, find the probability that (a) 2 are boys (b) atleast one is a boy.
- 32) A box contains 5 blue and 7 pink marbles. 5 marbles are drawn at random. What is the probability that the sample contains 2 pink marbles? Also find the mean number of pink marbles.
- 33) A sample of 100 students is chosen from a large group of students. The average height of these students is 162 cm. and standard deviation is 8 cm. At $\alpha = 5\%$, can we reasonably assume that the average height of large group of students is 160 cm?
- 34) Five students were given an intensive coaching and 2 tests were conducted before and after coaching, the change in their marks are as follows:

2, 0, 5, -2, 3

Do the scores after coaching show an improvement? Use $\alpha = 5\%$.

35) For the following transportation problem, find the initial basic feasible solution by North-West corner rule. Compute the total transportation cost.

		Dealers				
		D_1	D_2	<i>D</i> ₃	Availability	
	O ₁	8	4	12	50	
Factory	O ₂	10	5	6	. 20	
	O_3	7	15,	3	10	
Demand		40.	20	20		

36) The price of a machine is ₹ 3,000. Its maintenance cost and resale value at different ages are given below :-

Year	1	2.	3	4	5	6
Maintenance cost (₹)	1000	1100	1150	1300	1500	1900
Resale value (₹)	1750	1250	850	600	500	450

What is the annual average cost? When the machine be replaced?

VII. Answer any two of the following questions.

 $(2\times 5=10)$

- 37) The daily wages of workers of a factory are normally distributed with mean ₹ 500 and standard deviation ₹ 40. Find the probability of worker whose daily wage will be (a) more than ₹ 530 (b) between ₹ 380 and ₹ 460.
- 38) Following expected frequencies are obtained after fitting binomial distribution by estimating the parameter.

Oi	29	37	45	62	50	27
Ei	7	35	75	81	43	9

Test whether binomial distribution is a good fit at $\alpha = 1\%$.

- 39) In a fish net manufacturing process, the average number of defects per square meter is known to be 3. Determine the control limits for the number of defects.
- 40) Solve the following linear programming problem graphically.

Maximise Z = 5x + 10y

Subject to constraints : $5x + 4y \le 40$

$$3x + 4y \ge 24$$

and $x \ge 0$, $y \ge 0$.

31 (NS)

SECTION - D

VIII. Answer any two of the following questions:

 $(2 \times 10 = 20)$

41) Calculate gross reproduction rate and net reproduction rate for the following data and comment on the result.

Age group	Female	Female	Survival
(in years)	population	births	ratio
15-19	15-19 50,000		0.91
20-24	60,000	7,000	0.90
25-29	45,000	8,000	0.89
30-34	40,000	5,000	0.88
35-39	30,000	3,000	0.87
40-44	25,000	1,000	0.86
45-49	20,000	100	0.85

42) a) Compute the cost of living index number for the following data. (5)

		Price (in ₹)		
Group	Weight	Base Year	Current Year	
Food	5	1600	2400	
House rent	10	4000	5000	
Clothing	3	800	1000	
Fuel and lighting	4	100	400	
Others	5	1600	2000	

Compute value index number from the following data. Comment on the result. (5)

	.2	2018	2020		
Item	Price (₹)	Quantity (kg)	Price (₹)	Quantity (kg)	
Α	50	8	60	, 10	
В	80	4	100	5	
С	70	6	60	6	
D	30	5	50	7	

43) Fit a second degree parabola of the type $y = a + bx + cx^2$ by the method of least squares to the following time series. Estimate the value for 2020.

Year	2010	2012	2014	2016	2018
Value	14	12	11	10	13

SECTION - E

(For Visually Challenged Students only)

40) Write the procedure of solving linear programming problem graphically.

CANARA VIKAAS PRE UNIVERSITY COLLEGE

Statistics answer key – 2024

Section - A

I. Choose the correct answer

5x1=5

- 1. b) longevity
- 2. c) $\frac{q_0 + q_1}{2}$
- 3. d) 12
- 4. a) Rejecting H_0 when it is true
- 5. b) V=0

II. Fill in the blanks by choosing appropriate answer from those given in brackets 5x1=

- 6. Geometric mean
- 7. 1/2
- $8.\sqrt{\frac{PQ}{n}}$
- 9. $d_2\sigma'$
- 10. First

III. Match the following

5x1=5

- 11. d) neonatal deaths
- 12. e) simple aggregative price index number
- 13. a) leptokurtic ($\beta_2 > 3$)
- 14. b) 1-β
- 15. c) C₂

IV. Answer the following questions

5x1=5

- 16. Vital statistics are used in medical research
- 17. The general tendency of the time series data to increase or to decrease or to remain constant during a long period of time is called secular trend.
- 18. SD= $\sqrt{Variace}$ =5
- 19. Rejection region is the set of those values of the test statistic, which leads to the rejection of the null hypothesis.
- 20. Number of positive allocations= m+n-1

Section - B

V. Answer any FIVE questions

5x2 = 10

21. It is the irregular movement of the data over a period of time.

For example, sudden increase in death rate of Nepal due to earth quake

22.

- a. The values of the independent variable should have a common difference.
- b. The value of X for which the value of Y is to be estimated should be one of values of X.

23.
$$p(x)=p^xq^{1-x}$$
, $x=0, 1$
= $(2/5)^x(3/5)^{1-x}$, $x=0, 1$

- 24. Chi square distribution with 2 degrees of freedom Mean =2
- 25. A statistical constant of the population is called parameter A function of sample values is called statistic

26. SE(p₁-p₂)=
$$\sqrt{\frac{P_1Q_1}{n_1} + \frac{P_2Q_2}{n_2}}$$
=0.0711

27. A defect is a quality characteristic which does not conform to specifications. An item having one or more defects is a defective item

28.
$$C(Q^0) = \sqrt{2C_1C_3R} = 1000$$

Section C

VI. Answer any four questions

29.

4x5=20

Item	p_0	p_1	$q_{\scriptscriptstyle 1}$	p_0q_1	p_1q_1
Rice	20	40	10	200	400
Wheat	25	32	3	75	96
Ragi	18	30	5	90	150
Oil	80	100	3	240	300
				605	946

$$P_{01}^P = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 = 156.3636$$

Current year price is increased b6y 56.3636%

30.

Х	у	Δ^1	Δ^2	Δ^3
10	13	.4		
20	15	2		
30	19	4	2	
40	25	6	2	0

$$X = \frac{25-10}{10} = 1.5$$

$$y=y_0 + x\Delta_0^1 + \frac{x(x-1)}{2!}\Delta_0^2 + \frac{x(x-1)(x-2)}{3!}\Delta_0^3 = 16.75$$

31. X: No of boys

$$p=0.6$$
, $q=0.4$, $n=5$

$$P(\text{at least 1 boy}) = 1 - p(0) = 1 - 0.0102 = 0.9898$$

32. X: Number of pink marbles

$$p(x) = \frac{{}^{a}C_{x}{}^{b}C_{n-x}}{{}^{a+b}C_{n}}, x=0, 1, \dots, \min(a, n)$$

$$p(2)=0.2651$$

Mean=
$$\frac{na}{a+b}$$
=2.9167

33.
$$H_0$$
: $\mu=160$ H_1 : $\mu\neq160$

Test statistic
$$\frac{\bar{x}-\mu_0}{s/\sqrt{n}} \sim N(0, 1)$$

$$= 2.5$$

Critical value at 5% k=1.65

.ent. We reject H₀ and accept H₁. Average height large group of students is not 160cm

34.
$$H_0$$
: $\mu_1 = \mu_2$

$$H_1: \mu_1 < \mu_2$$

$$\bar{d} = 1.6$$
, $S_d = 2.4166$

Test statistic
$$t_{cal} = \frac{\overline{d}}{s_d/\sqrt{n-1}} \sim t_{n-1}$$

= 1.3241

Critical value at 5% = -2.13

We accept H₀

The scores after coaching do not show improvement.

35.
$$x_{11}$$
=40, x_{12} =10, x_{21} =10, x_{22} =10, x_{33} =10

Total cost $\Sigma\Sigma C_{ij}x_{ij}=Rs.500$

36. P=Rs.3000

				- 46	4 0	
year		Ci	Sn	P-Sn	sum Ci	$A(n) = \frac{(P - S_n) + \sum_{i=1}^n C_i}{n}$
	1	1000	1750	1250	1000	2250
	2	1100	1250	1750	2100	1925
	3	1150	850	2150	3250	1800
	4	1300	600	2400	4550	1737.5
	5	1500	500	2500	6050	1710
	6	1900	450	2550	7950	1750

Machine should be replaced at the end of 5th year and annual average cost is Rs.1710

VII. Answer any TWO of the following

2x5=10

37. X. Daily wages of workers of a factory

$$\mu$$
=500, σ =40, $Z=\frac{x-\mu}{\sigma}=\frac{x-500}{40}\sim N(0,1)$

$$P(X>530)=P(Z>0.75)=0.2266$$

$$P(380 < X < 460) = P(-3 < Z < -1) = 0.9987 - 0.8413 = 0.1574$$

38. H₀: Binomial distribution is a good fit

H₁: Binomial distribution is not a good fit

				$(O_i - E_i)^2$
Oi		Ei		$\overline{E_i}$
	29		7	69.14286
	37		35	0.114286
	45		75	12
	62		81	4.45679
	50		43	1.139535
	27		9	36
				122.8535

Test Statistic
$$\chi^2_{\text{cal}} = \frac{(O_i - E_i)^2}{E_i} \sim \chi^2_{\text{n-c}}$$

=122.8535

62	81	4.45679	
50	43	1.139535	
27	9	36	
		122.8535	
Test Statis		$= \frac{(o_i - E_i)^2}{E_i} \sim \chi^2_{\text{n}}$ 2.8535	ı-c
n=6, c=2 1		0333	
Critical va		$k_2 = 9.49$	
We reject	H _o and ac	cept H ₁	
Binomial	distributio	on is not a good	l fit
39.			25
CL		λ'	3
LCL	j.	$\lambda' - 3\sqrt{\lambda'}$	-2.19615=0
UCL		$\lambda' + 3\sqrt{\lambda'}$	8.196152

$$3x+4y=24$$

 $x=0, y=6$

Corner Points	Z=5x+10y
A(0, 6)	60
B(0, 10)	100 - Maximum
C(8, 0)	40

x=0, y=10 and Z=100

Section D

VIII. Answer any TWO of the following

2x10=20

41.

year	female population	female births	survival rate	WSFR	WSFR×S
15-19	50000	1000	0.91	20	18.2
20-24	60000	7000	0.9	116.667	105
25-29	45000	8000	0.89	177.778	158.2222
30-34	40000	5000	0.88	125	110
35-39	30000	3000	0.87	100	87
40-44	25000	1000	0.86	40	34.4
45-49	20000	100	0.85	5	4.25
				584.444	517.0722

 $GRR = i \times \Sigma WSFR = 2922.2222$

 $WSFR = ({}^{t}B_{y}/{}^{t}/P_{y}) \times 1000$

NRR = $i \times \Sigma$ WSFR \times S=2585.361

NRR/1000 = 2.5853 > 1Population is increasing

42. a.

				Annual Control	a. 1007
ITEMS	p_0	p_1	Weights	Р	WP
Food	1600	2400	5	150	750
House Rent	4000	5000	10	125	1250
Clothing	800	1000	3	125	375
Fuel and Lighting	100	400	4	400	1600
Others	1600	2000 《	5	125	625
			27		4600

$$CLI = \frac{\sum WP}{\sum W} = 170.3704$$

b.

	2					
ITEM	p0	q0	p_1	q_1	p_0q_0	p_1q_1
A	50	8	60	10	400	600
В	80	4	100	5	320	500
С	70	6	60	6	420	360
D	30	5	50	7	150	350
					1290	1810

$$V_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0} \times 100 = 140.3101$$

Current year value is increased by 40.3101%

43.

·J.							
year	у	х	x ²	x ³	x ⁴	ху	x ² y
2010	14	-2	4	-8	16	-28	56
2012	12	-1	1	-1	1	-12	12
2014	11	0	0	0	0	0	0
2016	10	1	1	1	1	10	10
2018	13	2	4	8	16	26	52
	60		b and c are	0	34	-4	130
n a + 1 aΣx + aΣx ² + Erom (2), From (3) On solvin y=a + bx + Estimate ±	b $\Sigma x + c\Sigma x$ b $\Sigma x^2 + c\Sigma$ + b $\Sigma x^3 + c\Sigma$ b = -0.4 5a+10c=6 10a+34c= ag a=10.57 + cx ² =10.	$x^2 = \sum y$ $\sum x^3 = \sum xy$ $\sum x^4 = \sum x^2y$ $x^4 = $	(1) (2) (3) =0.7142 .4 x + 0.71 x=3), y=15	42x ²			

n a + b
$$\Sigma x + c\Sigma x^2 = \Sigma y - (1)$$

$$a\Sigma x + b\Sigma x^2 + c\Sigma x^3 = \Sigma xy - (2)$$

$$a\Sigma x^2 + b\Sigma x^3 + c\Sigma x^4 = \Sigma x^2 y$$
 --- (3)